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Influence of the critical curvature on spiral initiation in an excitable medium
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Spiral waves are created in a Belousov-Zhabotinsky medium due to the presence of some inert obstacle
placed into that medium. The eikonal equation, which is completely valid when the excitability of the
system remains constant, is shown to be insufficient when media with different excitabilities are used, as
predicted by Zykov’s kinematical theory [Biophys. 25, 906 (1980)], where two parameters, excitability

and curvature, are varied.

PACS number(s): 47.32.Cc, 42.15.Dp, 82.40.—¢g

I. INTRODUCTION

A spiral wave in a two-dimensional medium represents
a self-sustained activity. This kind of wave has been the
object of exhaustive research for decades, both experi-
mentally [1-3], analytically [4,5], and numerically [7-9]
in reaction-diffusion systems [10].

In particular, spiral appearance has been widely stud-
ied in cardiac tissue [11,12] since it seems to be intimately
related to some pathological states that disturb cardiac
rhythm. Thus, insights may be gained by exploring con-
ditions suitable for spiral wave initiation. In the litera-
ture, several mechanisms to generate spirals have been
specially studied: vulnerability [12—-15], which consists in
delivering a stimulus immediately after the passage of a
previous wave; or local inhibition, which consists in cut-
ting a piece of the wave front by means of a temporal dis-
turbance in the medium, creating a discontinuous wave
front [16,17]. Another alternative method consists in dis-
turbing the propagation of waves in a medium by means
of the presence of permanent obstacles in that medium,
e.g., a previously infarcted region in the heart [18,19].
Different kinds of interactions are possible when a wave
train collides with an obstacle, waves can follow the edge
of the obstacle and surround it or leave the edge, giving
rise to a discontinuous wave front that may evolve in a
rotating spiral.

The origin of the previously mentioned spiral forma-
tion must be investigated in terms of the existence of a
critical curvature (maximal curvature permitted by a cer-
tain medium), above which a wave cannot propagate.
Different efforts, both theoretical [20-22] and experimen-
tal [23,24], have been devoted to the understanding of
this phenomenon. In particular, Foerster, Miiller, and
Hess [23] pursued experiments in a Belousov-
Zhabotinsky (BZ) [25] medium, exploring an idea that
had been previously suggested and numerically developed
by Zykov and Morozova [20]. They initiated waves by
immersing very thin glass capillarities spattered with a
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silver film in a liquid BZ medium, which acted as a chem-
ical stimulus for a wave [26]. With different radius capil-
laries, they were able to find a critical radius below which
wave expansion was not possible. Using the eikonal
equation [22], they estimated the diffusion coefficient cor-
responding to their BZ reaction.

Although a lot of theoretical research concerning the
understanding of spiral initiation in chemical systems has
been done, in other fields, e.g., cardiology, spiral initia-
tion is intimately related to the appearance of some
pathologies, and it is there that this problem becomes
worthy of attention. Recent clinical trials of drugs that
affect cellular excitability in the heart were terminated
after observing an increase in the rate of sudden cardiac
death in the treated group relative to the untreated group
[18]. All patients in this study had recently survived a
myocardial infraction and may have had structural dam-
age to heart tissue. Spiral appearance in such a medium
is influenced both by the excitability of the medium and
by the geometry of the damaged region.

Throughout this paper, we investigated the influence
that excitability of a BZ medium has on the critical cur-
vature, and we fitted the experimental results to the
theoretical predictions obtained from a general reaction-
diffusion system [21]. A brief discussion about the possi-
bility of extending our results to other systems, e.g., the
cardiac muscle, is also presented.

II. EXPERIMENTAL METHOD

Experiments were performed in a BZ medium, where
the catalyst (ferroin 0.008 M) was immobilized in a silica
gel [27]. The gel was 1-mm thick in a Petri dish of 49
mm in diameter. The Petri dish was filled with the fol-
lowing recipe: +M CH,(COOH),, +M H,SO,, varying the
NaBrO; concentration (from 0.04M to 0.35M) to get
different excitabilities [22] in the system. The depth of
the liquid layer was always 6 mm to prevent any interfer-
ence between the oxygen in the air and the BZ reaction.
The experiments were performed at room temperature
(25£1°Q).

After preparing the gel, while it was still liquid, a piece
of a chemically inert material (glass and Teflon slides
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were used with similar results) was placed in the middle
of the Petri dish. In our experiments, objects of different
geometries were used; although they always presented
analogous properties, their curvature was smooth (almost
zero) along most of the edge of the obstacle, except on its
extremes, where a high curvature was imposed. These
extremes presented a round shape, where the curvature of
the wave was experimentally measured. Experiments
were followed with a charge-coupled-device (CCD) cam-
era and recorded on a video tape. Images were taken
close to the tip and converted to a binary file. Near the
obstacle edge, the position of those points belonging to
the wave front were fitted to a circumference with an ac-
curacy better than 98%, and the curvature of the wave
front was estimated as the inverse of its radius. The par-
ticular value of the curvature, above which, for a certain
excitability, the front leaves the edge of the obstacle, is
called the critical curvature (K_). Experimentally, obsta-
cle radii between 75 and 300 um were considered.

A circular wave was generated somewhere in the medi-
um by touching the upper surface of the gel with a silver
wire [26]. A part of this wave was inhibited by means of
an iron wire, which gave rise to a discontinuous wave
front that evolved into a pair of rotating spiral waves.
This constituted our test wave. When the test wave
reached the obstacle placed in the middle of the gel,
different behaviors were observed depending on the cur-
vature of the obstacle and the excitability of the medium.
No refractoriness effects were observed, which was
checked by decreasing the frequency of the spiral waves
using a method similar to that described in [28] (a micro
drop, about 15 ul, of 1M malonic acid was injected with a
syringe into the core of the test wave).

The velocity V,, of the test wave was measured in a
part of the front far from its tip, where the curvature can
be considered to be zero. On the other hand, the wave
position close to the obstacle was followed and recorded
along the experiment, which allowed us to calculate the
velocity V. The particular value of this velocity, under
which the front leaves the edge of the obstacle, is called
critical velocity (V).

It would be possible to carry out the same experiment
using a liquid system, but a silica gel was used in order to
compare our results to those theoretically predicted in
[21], where one of the variables (the so called inhibitor)
had a diffusion coefficient equal to zero.

Capillarity effects close to the obstacle and to the walls
of the Petri dish were considered negligible or, at least,
they did not affect qualitatively the observed phenomena.
The influence of the liquid and gel capillarity was studied
by using different chemically inert obstacles (glass and
Teflon slides, as was previously mentioned). The increase
of the gel thickness close to the obstacle was always less
than 2% of the gel thickness far from it. In experimental
figures, this effect is seen as a shadow in the region near
the obstacle.

III. RESULTS

When a wave collides with an obstacle, different
responses can be observed depending on the geometrical
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size of the obstacle and on the excitability of the medium:
(i) The wave can collide with the obstacle and surround
it, recovering its previous shape after surpassing it [Figs.
1(a) and 1(b)]. (ii) The wave can collide with the obstacle
and follow its edge while the curvature of the obstacle is
small, but suddenly, close to the extreme of the obstacle,
the curvature becomes large and the wave will leave the
edge, so that a discontinuous wave front is generated,
which evolves into a spiral wave [Figs. 1(c) and 1(d)].
Once a spiral is created in a medium, it remains forever,
disturbing the propagation of the rest of the waves in that
medium.

The different behaviors that we have just related are
due to the relationship between the curvature imposed by
the obstacle at the extremes and the excitability of the
medium. For a particular obstacle, there is a critical ve-
locity of the front close to the obstacle V. (corresponding
to a critical excitability 1/¢), below which the wave can-
not follow the edge. In the same way, for a given excita-
bility, we observed a critical curvature K., above which
the wave must leave the edge of the obstacle. In Fig. 2(a),
the critical curvature and the critical velocity were plot-
ted as a function of the excitability of the system. In our
experimental BZ reaction, we have defined the excitabili-
ty as 1/e=10? [BrO;” ][H']/[CH,(COOH),] following
[29]. It is possible to observe both ¥, and K, increase
with 1 /¢, but only following a different functional depen-
dence, as can be observed in Fig. 2(b), where V, is plot-

FIG. 1. Experimental interaction between a wave train and an
obstacle. For small curvatures, the wave that collides with an
obstacle (a) is able to surround it (b). The radius of the obstacle
is 150 um and 1/e=15. For large curvatures, a wave that col-
lides with an obstacle (c) cannot follow the edge of the obstacle,
giving rise to a discontinuous wave front (d), which will evolve
into a rotating spiral wave. The radius of the obstacle is 75 um
and 1/e=30. The obstacle is seen as a stripe at the left of the
figures (dark in a and b and lighter in c and d). In a narrow re-
gion, close to the obstacle, capillarity effects on the liquid and
gel layers can be observed.
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FIG. 2. Experimental data relative to critical curvature, critical velocity, and excitability. (a) Both critical velocity (V. ) and curva-
ture (K_) are shown as a function of the excitability of the medium (1/¢). Note that the functional dependence is different for both
variables. While the critical curvature is almost linear in the excitability, the critical velocity seems to saturate for high excitabilities.
The critical velocity is represented as X and the curvature as 0. (b) ¥, is shown as a function of K. As it is foreseeable from (a), its
dependence is clearly not linear. The excitability of the system is responsible for such behavior.

ted as a function of K.. The dependence between both
variables is clearly not linear, since it is influenced by the
excitability of the medium, this influence being stronger
for media of low stability.

IV. DISCUSSION

We have investigated the relationship between the crit-
ical curvature and the critical velocity for different exci-
tabilities in the framework of the BZ reaction. There ex-
ist in the literature different approaches to the same
phenomenon. Foerster, Miiller, and Hess [23] estimated
the critical radius and the diffusion coefficient of a similar
BZ medium. Their approach was different because they
used a medium with a constant excitability and fitted
their results to the well known eikonal equation:

V,=V,—DK , (1)

where V, is the normal velocity of a wave front with cur-
vature K, V,, is the normal velocity of a flat front, and D
is the diffusion coefficient of the medium. They estimated
a value of D=1.9X107° cm?/s. Note that they used a
liquid medium, where in a first approach all variables can
be considered to have the same diffusion coefficients.

In our experimental approach, we varied two parame-
ters, which led us to the situation described by Zykov’s
equation [21]. We observed [Fig. 2(b)], in media with
different excitabilities, that the dependence between cur-
vature and velocity is not linear. Zykov [21] calculated
for a general reaction-diffusion system (the Oregonator

model [29] that describes our experiments with the im-
mobilized catalyst can be reduced to that form by scaling
time and space) an expression for the critical velocity
[Eq. (10) in [21]]

VCCI(GO—'918+DKC) y (2)

where 6, is the maximal velocity that a flatfront can
reach in a medium with €0 (the system with the
highest excitability), and 8, is a first-order correction of
the velocity for €70, which must verify 6, <6,/e. Our
experiments fit to Eq. (2) with D=2.0X10"°> cm?/s,
6,=3.8X107° cm/s, and 6,;=9.9X 10" * cm/s. The re-
gression coefficients always showed an accuracy better
than 97%.

In summary, we have experimentally observed that in a
medium with some inhomogeneities (obstacles), spiral
formation is intimately related to the shape of those
obstacles—the curvature induced on the propagating
wave fronts. We have also observed that there exists a re-
lationship between the maximal curvature permitted by
different media and the critical velocity in such media.
This rate depends on the excitability of every medium, as
is predicted by Eq. (2).

The estimated diffusion coefficient agrees quantitatively
with that estimated by other authors [23,30], and the
maximal velocity of a flatfront in a medium when €¢—0
(6,), has a value higher than the velocity value experi-
mentally observed for the system with the highest excita-
bility.

Note that Eq. (2) was obtained by considering high ex-
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citabilities (small values of £). This equation has been ACKNOWLEDGMENTS

shown to correctly fit our experimental results, but for
smaller values of 1/ its validity must be put under con-
sideration, and it would be necessary to consider a quad-
ratic approach in € (6,—6,, e +6,€2) to estimate the criti-
cal velocity value. Nevertheless, experimental measure-
ments were not carried out for smaller excitabilities, since
the system becomes hardly excitable and new problems
such as front instabilities make any further study in this
region difficult. Our results, showing the influence of the
excitability on the critical velocity, can be extent to other
systems, e.g., the cardiac muscle, where a similar parame-
ter € can be defined.
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FIG. 1. Experimental interaction between a wave train and an
obstacle. For small curvatures, the wave that collides with an
obstacle (a) is able to surround it (b). The radius of the obstacle
is 150 um and 1/e=15. For large curvatures, a wave that col-
lides with an obstacle (c) cannot follow the edge of the obstacle,
giving rise to a discontinuous wave front (d), which will evolve
into a rotating spiral wave. The radius of the obstacle is 75 pm
and 1/e=30. The obstacle is seen as a stripe at the left of the
figures (dark in a and b and lighter in ¢ and d). In a narrow re-
gion, close to the obstacle, capillarity effects on the liquid and
gel layers can be observed.



